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Much effort in the past several years has gone into the investigation, development, and
design of digital computers and devices capable of carrying out logical operations and
performing control functions by means of fluid-jet elements, These devices are inten~
ded to carry out the same operations as electronic citcuits, Jet elements are also used
in various types of sensing and operating equipment{*?2].

Jet elements are based on two principal mechanisms: a) the interaction of liquid or
gas jets, and b) stream-wall interaction (the so~called Coanda effect). Jet elements
usually combine both of these mechanisms [?].

Cronin [*] used conformal mapping to solvé the problem of collision of jets emerging
from channels with parallel walls for the case of an incompressible fluid with special
reference to jet amplifiers. However, he did not obtain analytical expressions in finite
form for the required quantities ; his computations for an angle of 18”between the
channel axes are carried out by numerical integration.

In the present paper we consider the collision of gas jets emerging from channels with
parallel walls whose axes form an arbitrary angle, The flow is assumed to be subsonic,
planar, steady, potential,and adiabatic. The problem is solved by the method of
Chaplyginl*] as generalized by Fal'kovich [*] for the case of several characteristic ve-
locities, This enables us to find expressions for the stream function, the jet compression
coefficient, and the geomewric flow elements. We extend the solution to the case of an
incompressible ﬂuidgby a limiting process. Analytical formulas in closed form are ob~
tained for the case where the channel axes are at right anglées to each other. These
formulas were used as a basis for derailed numerica? calculations.

Our results can be used for computing the geometric characteristics of discrete-action
jet amplifiers and analog-type jet amplifiers.[2].

1. Let us consider the collision of jet sweams emerging from channels of finite
width and parallel walls, Two of the walls meet at the point 0 and form the angle
a =on (0<<o<1)(Fig.1).

T

Fig. 1 Fig. 2

Here OC, AB, OE, FD are the channel walls; AM, FN are the free jet surfaces;
¥, U, U3 ate the gas velocities at the infinitely distant channel cross sections
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BC, ED and at the jet cross section JMN ; py, Py, Psare the gas densities at the same
cross sections; By, Ay, Oare the widths of the channels and of the confluent jet at in-
finity; m is the angle of inclination of the jet to the z -axis at infinity,

We assume that the flow is planar,subsonic, steady, potential, and adiabatic,and that
the gas in both channels is of the same nature, We shall limit ourselves to the case
where the jet boundary QL is not a line of discontinuity,but rather a streamline com-
mon to the two flows along which the gas parameters vary continuously. The potential
solutions for both jets are %herefore analytical continuations of each other. This implies,
in twrn, that an analytical solution for the two flows together can be obtained by the
usual method applied to potential flow problems, The criterion of continuity of the flow
parameters along the boundary OL in a certain special case is given in[],

Let us assume that along the streamlines COL and EOL meeting at the point O the
stream function ¥ = 0. If we denote the gas discharge rates at the cross sections BC
ind éE D b)trh @, and Q, ,respectively,and the gas discharge rate at the cross section MN

y @ ,so that

Q=0 + Qs (1.1)

then the sream function is+p == Q,on the streamline BAM and ¢ = — @, on the
streamline DFM.

In the plane of the velocity hodograph with the polar coordinates T, 8 ,i.e. in the
plane of the variables T = ¥® / vjmay” (Where v is the velocity, vpay the maximum
velocity,and 8 the angle of inclination of the velocity to the Z -axis (Fig. 1)) the flow
domain under consideration can be represented as a circular sector of radius 1ty and the
vertex angle o (Fig. 2). The boundary conditions are

Y= for =00ty

v=0 for 8 =0, 5 <<T< Ty (1.2)
Y = for 8 =on, 0T T

Pp=w@; for B =00 TITT

b =0 for T=15, 0<<OmM 1.3)
Pp=—@Q for T=T1m<O on

We have thus reduced solution of our problem to finding the solution of the interior
Dirichlet problem for Chaplygin's equation

W —) 5 F e+ E— DU -8+ D) AGE =0 (14)

in the appropriate subregions of the circular sector, Here B == 1/ (x — 1),
= C,/C, . Since t<<1/ (2B 4 1),it follows that £q. (1.4) is an elliptic
equation in the region under consideration.

Following [®],we shall seek the solution of the problem in the form

Y1 (7, 8) = D) apar(¥)sinAd, A =

5

n=1
$a(%,0) = Q1 T2 4 3} [ A (v) + Bala (¥)] sin A0 (1.5)

Nws]

Pa (v, 8) = @1 — ¢ 6% + 2} [Caza (%) + Dala (%)l sin A8
n=al
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Here the subscript of 1 denotes the number of the subregion of the circular sector to
which the solution refers; zx () is the integral of the equation

WU —NZ 4+ P—DUZ —MBU—@2p +1)1 2 =0 (1.6)

which is regular for ¥ == 0; £ (t)is the second linearly independent integral of Eq.
(1.6) obtained by Lighthill [?] and Cherr)f; [%*] and first used in the theory of gas jets
by Fal'kovich [§]. For the Wronskian of these integrals we have

wa(?) =2/ (D) L ()= (®) () =A{1 -1 (1.7)

The coefficients @,. Ap,..., D, must be determined.

The stream functions given by (1. 5) satisfy boundary conditions (1.2), Now let us
require fulfillment of boundary conditions (1. 3) and of the conditions of analytical con-
tinuation through the subregion boundaries, i. e.

Y1 (71, 6) = Ps (T, 6), My _ %% o 1, 0B Con

v 9
(1.8)

Vs (73, 6) = Y5 (71, 6), ?—:=% for tve=1, 0 SO oON

Conditions {1, 3) and (1. 8) yield the system of equations

Cnza (¥3) + Dpla (v3) = — (2Q / nn) cos Am
(4n —ap) 22 (7)) + Brla (1) = — 20,/ nx
(An—ap) 22" (%)) + Bala' (7)) = 0
(An—Cp) 2a(%2) + (B — D) La (v3) = (—1)"2Qy/nn
(An —Cn) 22/ (%2) + (Bn — Dp) T’ (72) = 0

Solving this system and making use of (1. 7), we obtain the coefficients

Qny Ap yeeey L)y, This determines stream functions (1. 58), The final soliition of the
problem is of the form

(1.9)
W (%, 0) =22 . fi(v)sinh0, u(,0)= QT4 2 ¥ 2-gy(v)sinA9
N} N}

©0
Vo5, 0) = Q1 —Q o + 2L T L1, (x)sin 10

fimay

Here we have used the notation

INUES [— coshm 4 g A (T Ty (vs, r.)'] )

\i ]
w, (1) +(=1)"es w, (T2} | 2, (s}

£, (N) TA (T, Ts)

g_x (t) =& z, (.") w, )

+ [___ cosAm 4 (—1) e T, (va, T3) J £, (v)

w, (12) z;(va)

£, {1} 2" (1) z; (v,):, Ty (v, 1) (1.10)

XA (t) = wa- “_zk (“') €08 km + [81 wl (tl) + (~l)n eﬁ wx(r2) ZA (T')
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in which["9
Ta(v, %) =2 (V) Ea () — La(D) 2a(ts),  Taf(w, 1) =0

Ty (T!v TS) = [T)‘, (Tv 73)]"’"{’ Ty (Th ri) = wl(ri) (i = 19 2v 3)

(1.11)

_hy (1 —1)
bvs (4 — )P

We can readily verify from (1, 10) - (1. 12) that

0s _ haa(t—v) (1.12)

& b- o Svs (1 — -r,)g

g = %-

%, (Ts) = — cosim
, A h T Yy "‘l (fx)
) 4% (f;) = -?’—- [— 4% (Ta) cosAm + —81— (—é) Wz;‘ (fl) +
n .\ 2 (v2)
+ (g (‘:T) N ”*(")] (1.13)

The latter expression was obtained by differentiating (1. 10), setting T = Tg, app~
lying (1.7),and introducing the Chaplygin functions
tz," (1)
HO =@

From solution (1. 9) for ¢ = 1 we can obtain Makeev's solution [19) and other

special cases mentioned in his paper.
When hy = Ry, ¥y = g, p1 = pa, @1 = Qa2 we obtain from (1. 9) the solution
for the symmetrical case (Den Gan Kho [11] ),

2. Let us determine the compression coefficient and angle of deviation of the jet.
Since we shall be using the function Y3 (T, 8) only, we shall simply write ¥ (T, 8)
Along any jet surface we have

-B —x)yB 0
dy=2¢8=9" P gnpgn,  dr=2¢ L9 Poosoan  (2.9)

v [

Substituting the stream function ¥ (%, 8) into (2. 1), integrating over 8 from Q
0 . and setting T = Ty, We obtain the parametric equations of the jet contour A M

o
_ 40 Ta(1 — )" X (%) fsin(A—1)0  sin(A+1)0
y=h+5 vs ?:J\l 2a [ A—1 T T At ] (2.2)
_AQ n(l—w) [ (%) o %' (%) [cos(h—1)8 , cos(h+1)0
= " {n=1"""i_n§1 p7y [ A—1T T a1l ]}

In similar fashion we obtain the equations of the contour FIV

40 t(1—t)P

-6;‘- Vs x

Yy’ = — hycoson -

2] , o, ) )
% {,inm Z‘(__i)u:'_:_:(-":_)_*_ 3) xxzin) [sm(k-—l)e __sin (x+1)e]}

o A—1 A1
— )t
z’' = hysinon 4 %%'—'Lv:—')— X (2.3)

% {cos an Zl (—1) ix’ f’: _ gl szifa) [cos {A:ii) ] + cos (;._:—11) ) ]}
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Here 2y ¥'are the coordinates of points on the contour' FN«

In order to find the relationships among the parameters of the problem we make use
of Zhukovskii's assumption[1#] that the points M and N lie on equipotential lines. Under
this assumption we have . s ’

Yy — Yy =Ocosm, 2,/ —x, =dsinm {2.4)

Recalling (2.2) and (2. 3), we tansform (2.4} into

sin oxnt 2 (——1)"

& cos m.= hy + hycoson — 4dt; p— AT %y (T3) (2.5)

-

(2]
=

=3

[ee] o0
. . 467, —n" _, % ()
dsinm = hysinon + —— [cos on E_}l g1 " (ta)— ,EIF:T (2.6)
To these equations we add continuity equatioti {1.1), which we rewrite as
Ovg (1 — 73)P = lyoy (1 — )P 4 hyv, (1 — 7,)8
From this we obtain
- _'_r,_’/: 1—1\8 Ty ‘lh { - g\B
o= (=) +mal3)" (1=2) 2.7)

Dividing (2. 6) by (2. 5) and recalling (1, 13), (2. 7), we obtain

tgm = (Q (v, m) —1IL(v) +vIsinon + Qs (15, m) + Hy (v,)] +
+ (D (v, m) — Hy(v) +v DOu (v, m) 4 vIL (1,)] cos on} X
X {1/+v coson -[Dr(ty, m)— H(t) +v Dy (v, m) +
v ITx (1,)] sin‘on}™? (2.8

Here

4 [T\ A H(
()= ()" 3 pty 2gam

AfrVe A 5D
M) = (%) 2 51 )

z) (Ta)
Oy (t, m) = éé_%';_‘_r!)_ 2 (—1)m1 A’f— 121 (v5) cosAm (2.9)
n=1

Q, (v, m) =14 (;'l") X pf_ 121 (T5) cos Am,

n==1
vest Amw=(o) (=)

From (2. 5) with allowance for (1. 13), (2. 7), (2. 9) we find that

_ 1 —A(n, sicosm+ [H, (1)) — D, (11, m)] sinon
A (%1, 1) cosm — coson + (I, (1a) + D, (75, m)] sinon

v

(2.10)

By the "compression coefficient” of the confluent asymmetric jet we mean the ratio
of the smallest width § of this jet to the sum h, + h, We then find directly from Eq.
(2.17) that



6 F.S. Vladimirov

. 8 _ 1 1 Yy 1—’(1 A v s Yy i—*‘f’ B
k=4t = 1+v<_) (i—r.) + 1+v(_) (1-—:.) (2.11)
Relations (2. 8), (2. 10), and (2. 11) give usm, ¥, kas functions of T3, Ty, T3, ORN.
Let us consider some special cases.

Case 1. Letusset 0 = 1, A = Rn. We note that (2, 9) yields the equations
lim [Q, (v, m) + @, (T, m) coson) = Qyy, (T, M)
g—+1

lim {IT, (v) 4 Ha (%) coson] = 1, ()
G—1

lim [H) (t) + 11 (T) cos on] = — M1y, (%)
-1

lim M, (v, m)sin o = 2A (7, T3) 2; (v;) cos m (2.12)
O—~sl
. - . x s 5 (l’)
‘I’Lulx H,(t)sinon =2 (“) i (v)
The function 2, (t)is elementary [7],
{— (1 — )Pt
z(v) = ¢

B +1) "

We therefore have

31(")—'“—+(B+ )'—1(—1':—‘:%;; (2.13)

n(r) W\ 1 — )P+ (B+1)v —1
(%) nlr) = ( ) f — (1 — )1

Recalling (2. 12), (2. 13), we transform (2. 10), (2. 8) into
14@+1)n [ 1+(28+1)r,<i—r,)ﬁ__

cosm = 2@+ 1) (" T VT @B+ u\l—un (2.14)
(i—-V)(i—T') {t—n, T\ (1 — 13 \A] 1
T+ @R+ D (i—n) ] [‘ T ( ) (t—r.) ]
Q,, (vy, m) — Mg, (7)) — A (v}, Tg)sinm
V=2 (Ta, Ts) i M 4[5, (Tg) — Ry, (¥4, M) (2'15)
respectively.

In this special case Eq.(2. 14) follows directly from the familiar Euler theorem,

Case 2. Wesetg = /g, A = 2n.Here (2.8), (2. 10) become
Dy (v m) — g (v) + v 1 + 8y (T M) + Hypy (7)) (2.16)
WM = W, &) — Oy (53, ™) — ¥ [Ty, (53) F Dy (55, M)} :
1—A(t, w)cos m- Hy, (1)) — Dy, (v, m)
A (3, 1a) cos m - Iy (1) + Dy, (Tg, M)

3. In the case of an incompressible fluid

. z, (%) A .
lim _"_=(L); Im zx(r)=%_, lim  A(r, t5) =

2, (¢ 2
max—+ A (T3) 4 Pmax—+c0 Vmax—-©

(2.47)

Vv =
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and expressions (2, 8), (2. 10), (2.11) become

gm= (@0, m =T (o) +vIsinon +D° @, m) + B @) +
LI (.. m) e H° () v M (.. m) L wIl® In)] tna Awel) v
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Table

v | m | k

OO0 COCOO OCOOoOO

LW PVOO~I-J=] 3D
coumnooumnno oo oo

SO0 OoCOC OCCCO oOoCcOoOOD oOoC e
A IR

N DD DD
OOUUOSMMOOWUMOOMU

© @0 o0 ®

OO OO0 OO OCOOCCOOOOOO
LUO CUOCLr SToOoO LY

owggggqqqqammummmpﬁ

(=N =}

=0.20 g=0.50

0.106 | 32°04" | 0.517 |l 0,40 10.800, 1.225 | 54°37" | 0.469
1.652 | 6105 | 0.35 11 0.45|0.,900| 0.237 | 2617 | 0.460
2.471 | 6457 | 0.315 |l 0.45 [0.900] 3.388 | 60 12 | 0.489
0.812 | 5314 | 0.448 Y 050 |1.000] 0.192 | 2522 | 0.500
0.589 | 50 00 | 0.515 H 0,50 [1.000( 5.247 | 63 46 | 0.500

1.947 | 6203 | 0.370 || 0,55 [1.100| 0.159 | 24 42 | 0.543
0.455 | 47 46 | 0.578 |l .55 [1.400] 8.715 | 68 17 | 0.505

1.055 | 56 55 | 0.468 il 0. 60 |1.200| 0.133 | 2412 | 0.588
0.359 | 4555 | 0.642 H "e) 11°200| 1.252 | 43 56 | 0544
0.716 | 5342 | 0.550 |l 060 11200| 61439 | g3 44 | 0514
0.283 | 4410 | 0.707 {l o'g5 [1.300| 0.413 | 23 47 | 0635
0.512 | 50 58 | 0.630 Y o 65 (4.300] 0.864 | 3947 | 0.580
0.219 1 4216 | 0.774 | 0,70 |1.400| 0.098 | 23 26 | 0.682
0.366 | 4811 | 0.712 {1 0,70 [1.400| 0.650 | 37 07 | 0,621
9=0.30 8'32 1'288 8.082 2308 | 0.731
canpe .75 |1. 505 | 3501 | 0.666
0.760 | 46°34' | 0.442 |l 9'80 [1.600| 0.069 | 2250 | Q.781
g-égg 2’2* ég 823; 0.80 [1.600] 0.397 | 3319 | 0.715
77520 | 7003 | 0'335 |/ 0-85 [1.700] 0.058 | 2232 | 0.831
s | 40 : 0.85 {1.700| 0.310 | 31 41 | 0.767
g-?}is o ;i’ 82?;" 0.90 |1.800| 0.047 | 22142 | 0.88%
a5t N0 l1.800] 0238 | 3002 ! 0.823
0.337 | 3833 | 0.599 ¢ =0.60
A-0T1 | o188 ) 0.5 0.333( 0.405 | 25°3 | 0.315
0'745 48 04 0.558 0.333| 0.606 28 55 0.351
0.225 35 59 0.708 0.417] 0.191 21 00 0.306
oes0 | s 22 ' 0.417| 1.265 | 40 11 | 0.446
0 o8 | A 8‘3(2;% 0.500| 0.133 | 1957 | 0.335
0.411 42 59 0.690 0.500; 1.860 47 25 0.495
0.445 | 3332 | 0.82% 0:583| 0.102 | 1924 | 0.373
0.304 40 33 0.760 0.583| 2,588 53 15 0.530

0.667| 0.081 19 03 0.415
0.667| 3.580 58 08 0.556

0.750] 0.067 18 49 0.459
0.750] 5.057 62 15 0.575
0.833| 0.056 18 31 0.505
0.833] 17.500 65 48 0.588
0.917] 0.048 18 30 0.552

0.917| 1.424 40 50 | 0.579
0.917| 4.770 57 54 | 0.591
.000] 0.041 18 23 | 0.800
.000f 0.970 | 36 14 | 0.60)
.000| 9.687 64 48 | 0.600
.083] 0.035 18 17 0.648
.083] 0.734 | 33 31 0.629
.467{ 0.030 18 12 0.697
.467| 0.575 31 3 0.664
0.028 18 07 | 0.746
.250| 0.458 29 53 0.703
.333| o0.022 18 02 | 0.796
.333| 0.366 28 26 | 0.748
4171 0.018 17 57 0.846
A7) 0.294 2704 | 0.79%
.500| 0.015 17 52 | 0.896
5001 0.226 25 44 0.845

¢=0.40

646 | 39°28' | 0.430
804 | 5445 | 0.418
445 | 3523 | 0.469
260 | 6217 | 0.423
345 | 3317 | 0512
807 | 6712 | 0.422
279 | 3151 | 0.556
230 | 3050 | 0.603
141 | 4795 | 0517
192 | 2059 | o652
792 | 4337 | o567
61 | 2016 | 0.701
592 | 4058 | 0.620
134 | 2836 | 0.753
454 | 3848 | 0.675
A11 | 275 | 0.805
349 | 3649 | 0.734
09 | 2713 | 0.859
263 | 3448 | 0.796

g=0,50

0.443 30°35° 0.396
1.400 46 49 0.438
0.307 27 43 0.424

NG UADD SO U UTUT U P b G0 03 00 00 DO DI BB

88ggggmmOommooommmoommoommoommoo

COOO OOOOO ORrOON OCWO RO
COOC OEOO OO OO0 OO0 O0OOR coeee

e pui pui el i pal e el e el e e ek b
.é
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Table {continuned)
t T ENER v m k

2 N B

¢ ==0.70 ¢==0.80

P

°56' | 0.450 | 0.50 [0.625] 7.342 | 56 38 | 0.764
8‘%3 81% {I%gg 2(2) 00 | 0.515 || 0.55 [0.888] 1.003 | 25 23 o.ggg
0.2510.3571 2.268 | 4608 | 0.562 || 0.60 |0.750] 0.804 | 2327 0.6 9
0.30 l0.a28! 2971 | 5427 | 0.500 | 0.65 {0.812] 0.655 | 24 57 0.725
0.35 [0.500 3.806 | 5602 o.ggg 8'5% g.g;g 3.222 %g gi 3.765
.40 o, 5.49 | 6001 | O. . . . .
8.2(5} 0.33;% 7.}56 6329 | 0.669 | 0.80 [1.000| 0.364 | 18 32 g.ggg
0.50 10,714 1.659 | 3742 | 0.625 |l 0.851.062] 0.296 | 17 3?; 0.839
0.50 10,7141 4.227 | 5241 | 0.662 | 0.90 {1.125| 0.235 | 16 .88
iR 1| a =0
788| 7. .
8:2(53 8.57;?7 0851 | 2948 | 0.648 || 0.150.167) 3.724 | 41 22 8;321
0.6510.928| 0.073 | 2149 | 0000 1l 0:20l050a| 5505 | f230 | oaor
0.70 |1.000] 0.542 | 2 ) 22510, K .
6.800 | 5628 | 0.8%
0.75 |4.074] 0.440 | 2454 | 0.735 || 0.30/0.333} 6.8
8660 | 5950 | 0.843
0.80 |4.443) 0356 | 234 | 0.774 || 0.35/0.389 660 | 5950 | 0.843
0.85 11,214 o0.286 | 223t | 0.817 | 0.40[0.444] 1. 732
i3 1| 0.40]0.444] 5.781 | 47 04 | 0.826
0.90 4.286] 0.225 | 2118 | 0.803 0.4510.500{ 4.474 | 2109 | 0.718
g=0.80 0.45 | 0.500 8.483 5{; gg 8.??%
i A86] 2471 | 37°47 | 0.595 |l 0.5010.556] 1.17 18 .
8.328 8.550 z:izsg 44 05 o.gf;z 8'3(51 8‘&‘5-} g.ggg g gg g;gg
0.25 (0.312] 3.522 | 4927 | 0.678 600, 798 | 19 54 | 0.733
0.30 | 0.375| 4.447 | 5401 | 0.708 || 0.65{0.722| 0.66 7
558 | 1350 | 0.772
0.35 | 0.438] 5.684 | 5758 | 0.733 | 0.70]0.778 0'457 1350 | 0.772
0.40 | 0.500] 7.43% | 6124 | 0.753 | 0.75/0.8% 9,389 128 | 0.708
0.45 10562 1.8% | 3315 | 0.679 || 0.80/0.889] 0. 1208 | 0.828
'562) 4.380 | 4827 | 0.735 || 0.85]0.945| 0.320 )
8I§§ 8.325 f.300 28°08" | 0.670 |l 0.90]{1.000{ 0.257 | 1027 | ©.900

Formulas (3. 3) were used to carry ont detailed numerical computations whose results
are given in the Table,
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SELF-SIMILAR MOTIONS OF A RADIATION-HEATED GAS

BEHIND THE ABSORPTION=-INITIATING SHOCK WAVE FRONT

PMM Vol. 33, No.1, 1969, pp.20-29

V.M, KROL and 1. V, NEMCHINOV
{Moscow)
{Received June 25, 1969)

When acted on by sufficiently powerful light beams, gases which gansmit radiation
under ordinary conditions can experience breakdown. A survey of experimental data
and theoretical information on this phenomenon will be found in [*], one of whose
aspects is the shifting of the absorption zone to meet the oncoming light beam,

The present paper concerns the motion of the gas and heating behind the absorption
wave propagating solely as a result of one of the mechanisms noted in [*} (the hydro-
dynamic mechanism). The mechanism consists essentiallg in the following: a shock
wave begins to propagate from the breakdown zone, which is characterized by the in-
tensive release of energy and a considerable increase in pressure. lonization occurs at
the shock wave front, and this makes possible the absorption of radiation as a result of
the braking mechanism,

The heating of the gas which results in excitation of the atoms and ions also produces
absorption (because of the photoelectric effect from highly excited states), If the gas
ahead of the front is cold and nonionized, then it usually transmits radiation in the
optical range. Thus, the shock wave front marks the boundary at which radiation ab-
sorption begins (i.e. it initiates absorption and energy release due to absorption), There
are, of course, other factors which can produce such shock waves (electrical discharges,
vaporization of the surface of a solid body under one type of radiation or another, etc. ).

Absorption of radiation at small distances from the shock wave front produces a deto-
nation wavef!].

If the radiation flux incident on the shock wave front varies, then the detonation wave

ropagates with a variable velocity. It is of interest to consider gas motions behind the
?roms of such shock waves. With a power law of variation of the radiation flux with
time, ¢ ~ £%, the velocity of the detonation wave also varies according to a power law,
and the problem is self-similar,

1t is also interesting to consider gas motion in cases where the radiation is absorbed
at distances comparable with characteristic dimension of the problem, and even at dis-
tances such that the radiation passes almost freely through the heated gas behind the
shock wave front (through optically thin gas layers),

1. The radiation absorption coefficient ¥ due to free-free electron trapsitions in the
ionic field depends on the temperature and density in the complete~ionization zone in
the following way:

%~ 8 3 ="%p ~ e72p~tisph

Here ¢ is the quantum energy, T is the temperature, p is the pressure, and p is the
density.

In the multiple-ionization zone where absorption also occurs by way of the photo-
electric effect from highly excited atomic and ionic states the function (T, p) can
also be approximated by means of a power function,

% = koo~ p® = kv°p® (1.1)



