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Much effort in the past several years has gone into the investigation,development,and 
design of digital computers a’nd devices capable of carrying out logical operations and 
performing control functions by means of fluid-jet elements, These devices ace inten- 
ded to carry out the same operations as electronic circuits, Jet elements ace also used 
in various types of sensing and operating equipment(‘tsf. 

Jet elemenrs are based on two principal mechanisms: a) the interaction of liquid or 
gas jets, and b) stream-wall interaction (the so-called Coandh effect). Jet elements 
usually combine both of these mechanisms,laJ. 

Cconin [*I used conformal mapping to solve the problem of collision of jets emerging 
from channels with parallel walls for the case of an incompressible fluid with special 
reference to jet amplifiers. However, he did not obtain analytical ex cessions in finite 
form for the required quantities ; P his computations for an angle of 18 between the 
channel axes are carried out by numerical integration. 

In the present paper we consider the collision of gas jets emerging from channels wirh 
parallel walls whose axes form an arbitrary angle, The flow is assumed to be subsonic, 
planac,steadv,potential, and adiabatic. The problem is solved by the method of 
Chaplygin 1.1 as generalized by Fal’kovich [‘I for the case of several chacac tecistic ve- 
locities. This enables us to find expressions for the stream function, the jet compression 
coefficient,and the eometcic flow elements. We extend the solution to the case of an 
incompressible fluid 

gb . . . 
y a lrmrtmg process. Analytical formulas in closed form are ob- 

tained for the case where the channef axes are at ri 
formulas were used as a basis for detailed numerica B 

ht angles to each other. These 
calculations. 

Out results can be used for computin 
%-* 

the geometric characteristics of discrete-action 
jet amplifiers and analog-type jet amp rfrers.[s]. 

i. Let us consider the collision of jet streams emerging from channels of finite 
width and parallel walls. Two of the walls meet at the point 0 and form the angle 
a = on (0 < 0 < 1) (Fig. 1). 

8 

c 

c A 

Here OC, AB, OE, FD ace the channel walls; AM, F& ace the free jet surfaces; 
cc, vs, vs are the gas velocities at the infinitely distant channel cross sections 
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BC, ED and at the jet cross section MN ; pl, pa, p3 are the gas densities at the same 
cross sections; h,, h,, 6 are the widths of the channels and of the confluent jet at in- 
finity; m is the an 

We assume that 5i 
b of inclination of the jet to the 2 -axis at infinity. 
e flow is planar, subsonic, steady, potential, and adiabatic, and that 

the gas in both channels is of the same nature. We shall limit ourselves to the case 
where the jet boundary 01; is not a line of d~con~nui~, but rather a streamline com- 
mon to the two flows alon 
solutions for both jets are !L 

which the gas parameters vary co~tiuuo~~y, The potential 
erefore analytical continuations of each other. This implies, 

in turn, that an analytical solution for the two flows together can be obtained by the 
usual method applied to potential flow problems. The criterion of ~ont~~~ of the flow 
parameters along the boundary OJ!, in a certain special case is given in [‘I. 

Let us assume that along the streamlines Ctl?L and E;‘oL meeting at the point 0 the 
stream function 9 = 0. If we denote the gas discharge rates at the cross sections Bf: 
and Bi) by & and 0% ,respectivefy , and the gas discharge rate at the cross section MN 
by Q ,sothat 

Q = 01 + Qs 

then the stream function is 9 -_ 
streamline L)FM. 

Qon the streamline Bd&$’ and 9 = - Qa on the 

In the plane of the velocitv hodograph with the polar coordinates Z, 8 , i. e. in the 
plane of the variables z = tra / *axa (where tl is the velocity, %ar the maximum 
velocity, and 8 the angle of inclination of the velocity to the z -axis {Fig, 3) f the flow 
domain under consideration can be represented as a circular sector of radms za and the 
vertex angle a (Fig. 2). The boundary conditions are 

*=0 for 0 = 0, O<z<z, 

9 = QI for fj = 0, 2&Z\<% ti.21 

$=O for 0 = CM, 0<7\c$ 

9 = - Qz for 8 = Qst, %*<%<5 

9 = Qs for z = za, 0<0 <rn 

9 = - Q. for z=3+m\(t3<an W) 

We have thus reduced solution of our problem to finding the solution of the interior 
Dirichlet problem for Chaplygin’s equation 

in the appropriate subregions of the circular sector, Here fl = 1 / (X - I), 
X’= CPfCU . Since +c < 1 t (Zf3 + 1), it follows that Eq. (1.4) is an elliptic 
equation in the region under consideration. 

Following ia] , we shall seek the solution of the problem in the form 

M 

$1 (‘F, Q) = 2 a,z~.(t) sin ne, 
n-1 

h”+. 
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Here the subscript of I# denotes the number of the subregion of the circular sector to 
which the solution refers; ZA (T) is the integral of the equation 

47s (1 - 7) Zk” + 47 11 + (fl - 1) fl 2; - A* Ii - (28 + 1) tl 2,. = 0 (1.6) 

which is regular for 0 =;: i); La (‘t)is the second linearly independent integral of Eq. 
(1.6) obtained b 
by Fal’kovich [S r 

Lighthill [?I and Cherr 
. For the Wronskian o r 

[ets) and first used in the theory of gas jets 
these integrals we have 

WA (7) = z< (7) ca (r) - Cr’(r) ZA (r) = h (I- 7)s f’ (W 

The coefficients G. A,,..., D,, must be determined. 
The stream functions given by (1.5) satisfy boundar conditions (1.2). Now let us 

require fulfillment of boundary conditions (1.3) and o ! 
tinuation through the subregion boundaries, i. e. 

the conditions of analytical con- 

Conditions (1.3) and (1.8) yield the system of equations 

CnZA (73) + &t;A (x3) = - (2Q f fin) Gosh 

(4,--a,)zA(d + &6A(%) = --2Qdnn 
(An--a, ) ZA’ (%I) + &&A’ (%) = 0 

(4 - cl) za (G) + mI - ~~)~A(r~) = b---1)"~QJ~ 

(&-- GJd(G) + ml - D,) CA’ (%) = 0 

Solving this system and making use of (1.7). we obtain the coefficients 
an* A n ,..., BB. This determines stream functions (1.5). The final sol&ion of the 
problem is of the form 

(1.9) 

Here we have used the notation 
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91 
el,= - = 

ha1 (I - TIY Qa _ hva (1 - d 
Q 6V8 (1 - rafO ’ 

es=-_ 
Q 6VJ (f - GY 

(1.12) 

We can readily verify from (1.10) - (1.12) that 

x* (zs) = - co9 Xm 

%A’ (%I = -g 
[ 

-xz,,(r3)coshm ++- $- ( > 
‘Ia Q (?I) qq 5s. (71) + 

+ w,;+ (+) 

‘la “A (72) 

-a(G) (1.13) Q (G I 

The latter expression was obtained by differentiating (1.10). setting 7 = TS, app- 
lying (1.7) ,and introducing the Chaplygin functions 

rzi; (T) 
x&) = al, 

From solution (1.9) for a = i we can obtain Makeev’s solution [IOJ and other 
special cases mentioned in his paper. 

When h, = h,, V, = v,, pl = 8, 91 F= Qa we obtain from (1.9) the solution 
for the symmetrical case (Den Gan R ho [tr] ). 

2. Let us determine the compression coefficient and angle of deviation of the jet. 
Since we shall be using the function qps (T, 8) only, we shall simply write 9 (‘c, 0). 
Along any jet surface we have 

dy = 2&’ -‘)-r-r $sinBdB, dx = 2% (1-vT)-a !&stldO (2.1) 

Substituting the stream function TJI (7, 8) into (2. I). integrating over 8 from Q to 
0 , and setting T G 7s , we obtain the parametric equations of the jet contour,dM 

y = hl + $ T8(i --6”’ 

x _ 4Q TS (I -.W9 
on VI 

In similar fashion we obtain the equations of the contour FN 

y’ = - h,cos an + $ ” (’ --8r8)y x 

60 rn (I - *d-c x’ =.h,sin an.+ dll va X 

4 cosdrr 

n-1 
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Here 2’9 8’ are the coordinates of points on the contour rFN* 
In order to find the relationships among the parameters of the problem we make use 

of Zhukovskii’s assumption[l$j that the pointsMand NIie on equipotential lines. Under 
this assumption we have 

!#&--&= b COS m, 2/ - zj+f = d sin m (2.4) 

Recalling (2.2) and (2.3)‘ we transform (2.4) into 

12.5) 

8ainm =h,sinorr++ - $&$I (2.6) 
ft=1 

TO these equations we add cont~nui~ equation (I. I), which we rewrite as 

4% (1 - z#’ = h,v, (1 - T$’ + hav, (1 - r,)@ 

From this we obtain 

(2.7) 

Dividing (2.6) by (2.5) and recalling (1.X3), (2.7). we obtain 

f 
v I& (T,)] sinWc)‘-l 

Here 

From (2.5) with allowance for (Y..13), (2.7). (2.9) we find that 

i - A (tt, TS) cosm + [If, (~1) - a’,. &I, m)] sin ax 
V=* 

A (?a. rs) coa m - cos arr + IFi, (Ts) + ‘DA (f:, m)] sin on 

B 
of x 

the *‘compression coefficient” of the confluent asymmetric jet we mean 
e smallest width 8 of this jet to the sum hI + h, We then find directly 

(2.7) that 

(2,149 

the ratio 
from Eq. 
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k= * 
h + h (2.11) 

Relations (2.8), (2. lo), and (2.11) give us m, V, k as functions of TIC,, Ta, Ta, Uaz. 
Let us consider some special cases. 

Case 1. LetussetU= 1, A= I(. We note that (2.9) yields the equations 

lim[QA(r, m) + (h(r, m)cosan] = C&(5, m) 
a-4 

lim [ 11~ (r) + HA (T) cos on] = II,, (T) 
O-4 

lim [Hk (7) + Ilk(r) co9 an] = - IJ,, (r) 
O-4 

lim 0~ (7, m) sin ox = 26 (T, ~8) z1 (rs) cos m 
04 

lim HL (r) sin orz = 2 
O-4 

“‘$$q (r) 

The function zl (Z)is elementary [7] , 

i - (1 - Ty+l 
21 (f) = l (P+l)+ 

We therefore have 

(2.12) 

(2.13) 

Recalling (2.12), (2.13), we transform (2. lo), (2.8) into 

a,,, (TV, m) - n,,, (II) - A (fl, x8) ain m 
’ = A IT*, Ta) Sin m + n,,, (T,) - a,,, (T,, m) 

(2.15) 

respectively. 
In this special case Eq.(2.14) follows directly from the familiar Euler theorem. 

Case 2. We set Q = I/,, h = 2n. Here (2.8). (2.10) become 

tg m = 
‘m tTl* m) - “,tt (Tl) + V ti + n,, (T,! m) + H,, (T,)] 
* + 4, (Tl) - @,, (Tll 4 - v inet 6%) -k aan ($, m)l 

(2.16) 

i - A (Th To) cos m -i- H,, (TV)- (Da,, (TV, m) 
v= 

A (Tat Ia) COs m -t n,, (T,) + a,,, (I,, m) 

3. In the case of an incompressible fluid 

(2.17) 

I;m x1(r) = _& lim A (7, r,) = $ 
“rnax- “rnnx- 



CoWsion of jets emerging from channels with parallel wails 7 

and expressions (2.8)) (2. lo), (2.11) become 
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Table 

t I I Mb Y 1 m 

q=o.20 

0.55 2.750 0.106 32"04 0.517 
0.60 3,000 1.652 61 05 0.351 
0.60 3.000 2.471 64 57 0.315 
0.65 3.250 0.812 53 14 0.448 
0.70 3.500 0.589 50 00 0.515 
0.70 3.500 1.947 62 03 0.370 
0.75 3.750 0.455 47 46 0.578 
0.75 3.750 1.055 56 55 0.468 
0.80 4.000 0.359 45 55 0.642 
0.80 4.000 0.716 53 42 0.550 
0.85 4.250 0.283 44 10 0.707 
0.85 4.250 0.512 50 58 0.630 
0.90 4.500 0.219 42 16 0.774 
0.90 4.500 0.366 48 11 0.712 

:o. 
0.55 1.833 
0.55 1.833 
0.60 2.000 
0.60 2.000 
0.65 2.167 
0.65 2.167 
0.65 2.167 
0.70 2.333 
0.70 2.333 
0.75 2.500 
0.75 2.500 
O.Bo 2.667 
0.80 2.667 
0.85 2.833 
0.85 2.833 
0.90 3.000 
0.90 3.000 

4J= 
0.760 
3.120 
0.538 
7.529 
0.418 
2.163 
4.456 
0.337 
1.077 
0.215 
0.745 
0.225 
0:549 
0.183 
0.411 
0.145 
0.304 

30 

46"34' 
64 16 
42 35 
70 03 
40 15 
58 51 
65 11 
38 33 
51 36 
37 Ii 
48 04 
35 59 
45 22 
34 48 
42 59 
33 32 
40 33 

0.442 
0.361 
0.495 
0.335 
0.547 
0.411 
0.364 
0.599 
0.493 
0.653 
0.558 
0.708 
0.623 
0.765 
0.690 
0.824 
0.760 

Q = 0, 
0.45 
0.45 
0.50 
0.50 
0.55 
0.55 
0.60 
0.65 
0.65 
0.70 
0.70 
0.75 
8.; 

ok0 
0.85 

8-E 
0:90 

1.125 0.646 
1.125 1.804 
yE& yg 

11375 01345 
1.375 5.807 
1.500 0.279 
1.625 0.230 
1.625 1.141 
1.750 0.192 
1.750 0.792 
1.875 0.161 
1.875 0.592 
2.000 0.134 
2.000 0.454 
2.125 O.lil 
2.125 0.349 
2.250 0.090 
2.250 0.263 

.40 

39'28 
54 45 

0; t:: 
33 17 
67 12 
31 51 
30 50 
47 25 
29 59 
43 37 
29 16 
40 58 
28 36 
38 48 
27 56 
36 49 
27 13 
34 48 

0.430 
0.418 
0.469 
0.423 
0.512 
0.422 

$g 

0:652 
0.567 
0.701 
0.620 
0.753 
0.675 
0.805 
0.734 
0.859 
0.796 

0.35 
0.35 
0.40 

q=o,50 

0.700 I 0.443 30'35 
0.700 1.400 I 46 49 
0.800 0.307 27 43 

0.396 
0.438 
0.424 

! k t CJUl 

0.40 0.800 
0.45 0.900 
0.45 0.900 
0.50 1.000 
0.50 1.000 
0.55 i.iOO 
0.55 1.LiOO 
0.60 1.200 
0.60 1.200 
0.60 1.200 
0.65 1.300 
0 65 
0:70 

1.300 
1.400 

0.70 1.400 
0.75 1.500 
0.75 1.500 
0.80 1.600 
0.80 1 :600 
0.85 1.700 
0.85 1.700 
0.90 1.800 
0.90 1,800 

0.20 
0.20 
0.25 
0.25 
0.30 
0.30 
0.35 
0.35 
0.40 
0.40 
0.45 
0.45 
0;50 
0.50 
0.55 
0.55 
0.55 
0.60 
0.60 
0.60 
0.65 
0.65 
0.70 
0.70 
0.75 
0.75 
0.80 
0.80 
0.85 
0.85 
0.90 
0.90 

b.333 
I.333 

E 
I:500 

I.500 
p;; 

a:667 
0.667 

!% 
3:;;; 

II:917 
I.917 
3.9li 

I*:: 
1:ooo 
1.083 
1.083 
I .I67 
1.167 
1.250 
1.250 
1.333 
1.333 

::t:; 

::F% 

” I m I k 

q=o.50 

1.225 54O37' 
0.237 26 17 
3.388 60 12 
0.192 25 22 
5.217 63 46 
.0.159 24 42 
8.715 68 17 
0.133 24 12 
1.252 43 56 
6.159 
0.113 

63 li 
23 47 

0.864 39 47 
0.096 23 26 
0.650 37 07 
0.082 23 08 
0.505 35 01 
0.069 22 50 
0.397 33 19 
0.058 22 32 
0.310 31 41 
0.047 22 12 
0.238 30 02 

Q = 0.60 

0.405 
0.606 
0.191 
1.265 
(I,.133 
1.860 
0.102 
2.588 
0.081 
3.580 
0.067 
5.057 

EZ 
0:048 
1.424 
4.770 
0.041 
0.970 
9.687 
0.035 
0,734j 
0.030 
0.575 

8% 
0:022 
0.366 
0.018 
0.29i 
0.015 
0.226 

25"03 
28 55 
21 00 
40 11 
19 57 
47 25 
19 24 
53 15 
19 03 
58 08 
18 49 
62 15 
18 31 
65 48 
18 30 
40 50 
57 54 
18 23 
36 14 
64 48 
18 17 
33 31 
18 12 
3i 31 
18 07 
29 53 
i8 02 
28 26 
17 51 

z :: 
25 41 

0.469 
0.460 
0.489 
0.500 
0.500 
0.543 
0.505 
0.588 
0x44 
0.514 
0.635 
0.580 

3::;'; 
0.731 
0.666 
0.781 
0.715 
0.831 
0.767 
0.882 
0.823 

0.315 
0.351 
0.306 
0.446 
0.335 
0.495 
0.373 
0.530 
0.415 
0.556 
0.459 
0.575 
0.505 
0.58R 
0.552 
0.579 
0.591 
0.600 
0 .60:) 
0.600 
0.648 

00% 
0:ssa 
0.740 
0.703 
0.790 
0.746 
0.846 
0.794 
0.896 
0.845 
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a.15 
0.20 
0.25 

0.70 
0.75 
0.60 
0.85 
0.90 

0.15 

E 

o”:Z 

E 
0145 
0.50 

0.214 
0.288 
0.357 
0 ‘428 
0,500 
0.571 
0.643 
0.714 
0.714 
0.786 
0.786 
0.857 
0.928 
1.000 
1.07% 
1.143 
1.214 
1.286 

g=o.70 

1.200 
! ,698 

Z!! 
3:896 
5.294 

:% 
41227 
1.118 
.7.755 
0.851 

X% 
0:440 
0.356 
0.286 
0.225 

8% 

2: 0278 
56 02 
60 0% 
63 29 
37 42 
52 41 
32 35 
60 32 
29 48 
27 49 
26 14 
24 54 

E :: 
21 18 

q==O.BO 

0.186 2.171 
0.250 2,789 
0.312 3,522 
o”X37 ;.;44; 

0:sOO 71434 
0.562 1.886 
0.562 4,380 
0,625 1.300 

37”47’ 
44 05 

2: 02: 

5: E! 
33 15 
48 27 

28”08 

0.625 

0,700 
0.735 
0.771 
0,817 
0,863 

0.595 
0.642 
0,678 
0.708 
0.733 
0.753 
0.679 
0,735 
0.670 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

0.625 
0.688 
0.750 
0,8t2 
0.875 

~*~~ 
11062 
? .125 

0.60 0.667 
0.65 0.722 
0.70 0.778 
0.75 0.834 
8.;; ~.~~~ 

0:90 i ho 

Table {continued\ 

q=o.tN 

7.342 56 38 
1.003 2,4 23 

~.~~~ 
a:538 

:; E77 
20 41 

0.444 19 34 
0,364 18 32 
0,296 17 31 
0.235 16 28 

3,724 
4,571 
5.593 
6.899 

~*~~~ 
5:781 
1.474 

?% 
0:9sz 

:%3 
0:X% 
0.467 
0.389 
0.320 
0.257 

0.764 
0.675 
0.689 
0.709 

E; 
0:soo 
0.839 
0.881 

0.742 
0.774 
0.801 
0.824 
0.843 
0.732 
0.826 
0.718 
0.852 

:*;:: 
0:733 
0.750 
0.772 
0.738 

~~~~~ 
0:900 

Formulas (3.3) were used to carry out detailed numerical computations whose results 
are given in the Table, 
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Si%tF-SIMILAR MOTIONS OF A RADIATION-HEATED GAS 

BERIND THE ~SOR~TI~~~ITSAT~~ SHOCK 'klAVE FRONT 
PMM Vol. 33, No. 1, 1969, pp. 20-29 

V. M. KROL and I. V. NEM~HINOV 
(Moscow) 

(Received June 25, 1969) 

When acted on by sufficiently powerful Ii 
under ordinary conditions can experience % 

ht beams, gases which transmit radiation 
reakdown. A survey of experimental data 

and theoretical information on this phenomenon will be found in [s] , one of whose 
aspects is the shifting of the absorption zone to meet the oncoming light beam. 

The present paper concerns the motion of the gas and heating behind the absorption 
wave propagating solely as a result of one of the mechanisms noted in [I] (the hydro- 
dynamic mechanism). The mechanism consists essential1 in the followin : a shock 
wave begins to propagate from the breakdown zone, whit 1s characterize 4. ! by the in- 
tensive release of energy and a considerable increase in pressure. Ionization occurs at 
the shock wave front, and this makes possible the absorption of radiation as a result of 
the braking mechanism. 

The heating of the as 
absor tion (because o 

B 
B 

which results in excitation of the atoms and ions also produces 
the photoelectric effect from hi hly excited states). If the gas 

ahea of the front is cold and nonionized, then it usua ly transmits radiation in the H 
optical range. Thus, the shock wave front marks the boundary at which radiation ab- 
sorption begins (i. e. it initiates absorption and energy release due to absorption). There 
are, of course, other factors which can produce such shock waves (electrical discharges, 
vaporization of the surface of a solid body under one type of radiation or another, etc. !. 

Absorption of radiation at small distances from the shock wave front produces a deto- 
nation wave [‘I. 

If the radiation flux incident an the shock wave front varies, then the detonation wave 

P 
ropagates with a variable velocity. it is of interest to consider gas motions behind the 
rants of such shock waves. With a power law of variation of the radiation flux with 

time, q - Ia , the velocity of the detonation wave also varies according to a power law, 
and the problem is self-similar. 

It is also interestin 
f 

to consider gas motion in cases where the radiation is absorbed 
at distances compara le with characteristic dimension of the problem, and even at dis- 
tances such that the radiation passes almost freely through the heated gas behind the 
shock wave front (through optically thin gas layers). 

1, The radiation absorption coefficient X due to free-free electron transitions in the 
ionic field depends on the temperature and density in the complete-ionization zone in 
the following way: 

x - a-sT-‘Jap cv 8’ap-‘:$I. 

Here 6 is the quantum energy, T is the temperature, p is the pressure, and p is the 
densi 

In t e multiple-ionization zone where absor tion also occurs by way of the photo- x* 
electric effect from highly excited atomic an Bionic states the function x (T, p) can 
also be approximated by means of a power function, 


